
Using the Android NDK for
Graphics

This document .elaborates on the NDK example from the book and provided
up-to-the-minute details of the Eclipse build environment.

This example covers the use of OpenGLES version 1 (without shaders.)

3D Rendering with the NDK

All Android native code is compiled into a shared object library (a .SO library)
using the Android NDK tools and libraries. The functions that are required
to be externally visible have special wrapper methods written for them using
the notation of the Java Native Interface (the JNI) that makes them executable
within any Java program where they are declared as private static native

void MethodName(...) ... class methods.
The starter example that we are going to examine in this section should give

provide a good framework for porting desktop programs to Android devices. The
structure of the example follows the metaphor of the GLUT library described in
the book. In this case, four functions perform the tasks of, initialization, view-
port sizing, scene drawing and, resource release. The commensurate native C
language function are called, nativeIni(), nativeResize(), nativeDraw()

and nativeRelease().
The example is going to be based on a slightly modified version of the SanAn-

geles program that ship with the NDK (the SanAngles example is a well know
benchmark program for OpenGLES, it has been discussed in the book and mul-
tiple platform versions may be found on our web-site. Before looking at the
details it is worth saying a little about the function naming, and argument han-
dling convention that must be adopted when linking Android JAVA VM code
with code compiled into a native shared object library, this is the JNI, see the
boom for more details.

Bulding a native library

As a UNIX kernel lies at the heart of Android, the NDK works best when it used
on systems with a UNIX kernel, this makes development on WIndows somewhat
problematic as it is necessary to install one of the UNIX environments. e.g
mingw in order to run the cross-platform compiler that produces native code.

1

2 0. Using the Android NDK for Graphics

The NDK offers a neat makefile build system that sets appropriate paths to
locate the Android headers and compiler flags to target the output to a shared
object (.SO) library that can be linked to the main Android project . Where
possible, the shared object library should be built by setting up a makefile that
follows the NDK’s template. The makefiles are quite short, listing 0.1, shows
an example that builds a library called ”nkd1.so” from the single source file
”native.c”.

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_LDLIBS := -llog
LOCAL_MODULE := ndk1 # name of SO library
LOCAL_SRC_FILES := native.c # list of source files
include $(BUILD_SHARED_LIBRARY)

Listing 0.1: The SO makefile only needs to list the input files and name the
output library.

JNI nomenclature and NDK naming conventions

The Java Native Interface (JNI) is not an Android specific specification, it
applies to any situation where Java code running in a VM wishes to access
native code written in a native language, typically C. The NDK uses the JNI
as its definition of how to define function names and arguments in native code
so that they can be used with the method names and calling conventions in the
Java Because Java uses very different storage conventions for its variables, for
example, Java strings are not simply byte character arrrays, the matching of
parameters passed back and forth will need to undergo a translation and use
a highly structured naming convention. This is well documented in the JNI
specification [1].

One of the trickiest things to do with the NDK is to pass data and make
function calls back and forth between the native functions and the Android
API. The rules of the JNI describe how to interpret data passed to the native
functions, and how to package data to be returned to the JAVA code. (See the
book for an elaboration on this process.)

We refer you to the specification [1] for full details, however the example
in the book includes, passing integers, floats, and text strings, so with a bit of
intelligent guessing you should be able to work out how to use two, thee, or
more arguments in the functions. (See the book section on using the JNI.)

The NDK OpenGL example

Considering again the SanAngles example we shall use this section to show
how the Android specific sections can be used to design the program so that
it conforms to the familiar trilogy of OpenGL tasks: 1) setup, 2) render, and
3) resize, that should have a familiar ring from the book and that mapped

3

so neatly onto the GLUT. When we have extracted the Android essence and
reorganized along the lines of the GLUT you should be able to slot in the
visualization aspects of any OpenGL program following the GLUT metaphor.

Android NDK based OpenGL applications that are fundamentally going to
take over the full device screen require only the simplest of JAVA activity code
to be written. The book presented a technique for calling JAVA methods from
the native code, so if there is something (e.g. accelerometer data access) that
it is easier to do through the normal Android SDK it can be done that way;
Although, it is possible to access the accelerometers through NDK function calls
too.

The Activity code The JAVA code for the main activity and the GLSurfaceView
class is taken from that discussed in the book, only the names have been changed
and four static methods added to wrap the native functions for: initialization,
resizing, rendering and close-down. The code for the revised activity and its
class is presented in listings 0.2 and 0.3.

package org.openfx.example.GLESdemo;
// GLES imports
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
// Android imports
import android.app.Activity;
import android.opengl.GLSurfaceView;

public class DemoActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// create the OpenGL output surface
mGLView = new DemoGLSurfaceView(this);
setContentView(mGLView);
}

@Override
protected void onPause() {
super.onPause();
mGLView.onPause();

}

@Override
protected void onResume() {
super.onResume();
mGLView.onResume();

}

// this object represents the GLES enabled surface
private GLSurfaceView mGLView;

static {
System.loadLibrary("glesdemo");

}
}

Listing 0.2: The main application activity code.

4 0. Using the Android NDK for Graphics

class DemoGLSurfaceView extends GLSurfaceView {

DemoRenderer mRenderer; // protocol methods

public DemoGLSurfaceView(Context context) {
super(context);
mRenderer = new DemoRenderer();
setRenderer(mRenderer);

}
}

class DemoRenderer implements GLSurfaceView.Renderer {
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
// call our GL initialization code
nativeInit();

}
public void onSurfaceChanged(GL10 gl, int w, int h) {
// respond to change of display surface size
native Resize(w, h);

}
public void onDrawFrame(GL10 gl) {
// render now!
nativeRender();

}
// these are the method that
private static native void nativeInit();
private static native void nativeResize(int w, int h);
private static native void nativeRender();
private static native void nativeDone();
}

Listing 0.3: The OpenGL class and surface configuration methods

The OpenGL native code The native code builds into the shared object library
from as many source files as may be required. The NDK makefile is easily
adapted for a this project, see listing 0.4, the only points of note are the collec-
tion of source files and the linkage with the GLES library.

There is actually very little additional code that needs to be considered as
we are not going into the details of the OpenGL code used by the SanAngeles
or any other OpenGL example. The power of this example is that that it can
be adapted to cover just about anything that can be done on the desktop with
the GLUT. At the example’s heart are just three functions:

appInit();
appDeInit();
appRender();

A framework from which to extend these functions is given in listing 0.5.
The final two listings for this program connect the device independent OpenGL

code with the main Activity’s methods. We have shown in the bok how to call
native functions as if they were JAVA static class methods, and this example is
no different. In listing 0.6 the global variables used by the application timer are
defined, and the native methods for initialization and close-down are provided.
Listing 0.7 completes the picture by building the links to the code that resizes
the viewport and renders the scene at the current time.

5

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := glesdemo

LOCAL_CFLAGS := -DANDROID_NDK \
-DDISABLE_IMPORTGL

LOCAL_SRC_FILES := \
source1.c \
source2.c \
android-interface.c

MAKE SURE THE GLES LIBRARY IS USED !!!
LOCAL_LDLIBS := -lGLESv1_CM -ldl -llog

include $(BUILD_SHARED_LIBRARY)

Listing 0.4: The makefile for the native shared object library .

Breaking down the example into these short stages identifies the places in
the code that can be the jumping off point for enhancement.

6 0. Using the Android NDK for Graphics

// Functions called from the app framework.

// globlal variables and funciton prototypes
// would be declared here
extern int gAppAlive;

void appInit(){
// app specific code HERE
}

void appDeinit() {
// app specific code HERE
}

// render whatever we like !!!!
void appRender(long tick, int width, int height) {
if (!gAppAlive) return;

// Prepare OpenGL ES for rendering of the frame.
glViewport(0, 0, width, height);
glClearColorx((GLfixed)(0.1f * 65536),
(GLfixed)(0.2f * 65536),
(GLfixed)(0.3f * 65536), 0x10000);

// now draw - this might typically be:
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45, (float)width / height, 0.5f, 150);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

// Draw HERE

}

Listing 0.5: The device independent application functions for initialization, ren-
dering and closure.

7

#include <jni.h>
#include <sys/time.h>
#include <time.h>
#include <android/log.h>
#include <stdint.h>

int gAppAlive = 0; // the GO code

// global variables for screen size and timers
static int sWindowWidth = 320;
static int sWindowHeight = 480;
static int sDemoStopped = 0;
static long sTimeOffset = 0;
static int sTimeOffsetInit = 0;
static long sTimeStopped = 0;

/* Call to initialize the graphics state */
void
Java_org_openfx.example_GLESdemo_DemoRenderer_nativeInit
(JNIEnv* env) {
// this is a call defined in jni.h to initialize the
// GLES functions for Android NDL
importGLInit();
// custion initialize
appInit();
// reset the timer and set the "GO" code
gAppAlive = 1;
sDemoStopped = 0;
sTimeOffsetInit = 0;
}

/* Call to finalize the graphics state */
void
Java_org_openfx_example_GLESdemo_DemoRenderer_nativeDone
(JNIEnv* env){
appDeinit(); // custom funciton
importGLDeinit(); // NDK function
}

Listing 0.6: The NDK function interfaces for initialization and close-down.

8 0. Using the Android NDK for Graphics

/* call to resize the view */
void Java_org_openfx_example_GLESdemo_DemoRenderer_nativeResize
(JNIEnv* env, jobject thiz, jint w, jint h){
// set the global variables
sWindowWidth = w;
sWindowHeight = h;
}

/* Call to render the next GL frame */
void Java_org_openfx_example_GLESdemo_DemoRenderer_nativeRender
(JNIEnv* env){
long curTime;
/* if sDemoStopped is TRUE, then we re-render the same frame
* on each iteration.
*/
if (sDemoStopped) {
curTime = sTimeStopped + sTimeOffset;

} else {
curTime = _getTime() + sTimeOffset;
if (sTimeOffsetInit == 0) {
sTimeOffsetInit = 1;
sTimeOffset = -curTime;
curTime = 0;
}

}
// call the OpenGL renderer
appRender(curTime, sWindowWidth, sWindowHeight);
}

Listing 0.7: The NDK function interfaces for rendering and display size change.

Bibliography

[1] Sheng Liang. The Java Native Interface: Programmer’s Guide and Specification.
Palo Ato CA: Sun Microsystems Inc, 1999.

9

